beam sharing
in cyclotron-based proton therapy facilities

M.J. van Goethem1,2, V. Anferov3, S. Brandenburg2, J.M. Schippers1,4, N. Schreuder3, A.A. van ‘t Veld1

1 University Medical Center Groningen
2 Kernfysisch Versneller Instituut, Groningen
3 ProCure, Bloomington IN
4 PSI, Villigen
outline

- proton therapy market
- current facility operation
- fast switching
- beam splitting
- conclusions
EU proton therapy market

- population: 500 million
- cancer incidence: 2.7 million per year
- X-ray radiotherapy: ~1.4 million treatments per year
 - treatment units: ~3500
- annual turnover: ~15 billion € (< 1 % total healthcare)
- proton therapy: 2050 treatments per year (2011)
 - treatment units: 17 (2011)

- market proton therapy
 - patients with expected benefit: 200000 per year
 - study Dutch Health Council, 2009
 - treatment units/centers: ~600/200
- large expansion possible
- what needs to be done to realize it?
EU proton therapy market

- key requirements for expansion
 - more coordinated clinical validation studies
 - better treatment quality
 - scanning techniques
 - treatment planning
 - treatment verification
 - lower treatment cost
 - at this moment typically 3 × X-ray treatment
 - ingredients
 - investment reduction
 - compactness
 - operation efficiency
 - workflow optimization
proton therapy facilities

- mostly multiple treatment rooms
 - single accelerator
 - single degrader + energy selection system (ESS)

interference between treatment rooms
treatment delivery scheme

- scattering
 - “connect” degrader + ESS + beam line with gantry
 - tune degrader + ESS + beam line + gantry for maximum energy
 - deliver radiation field(s)
 - possibly retune for other energy inbetween fields
- scanning
 - “connect” degrader + ESS + beam line with gantry
 - tune degrader + ESS + beam line + gantry for starting energy
 - deliver radiation field(s)
 - retune for small energy steps inbetween layers
 Ÿ frequent retuning 20 – 30 parameters
 verification of tune (beam position, transmission etc.)
 Ÿ simplify by reduction # parameters
beam use pattern

Example of beam allocation at OKC

- long waiting times due to interference
- significant time for switching and tuning

source ProCure Oklahoma Proton Therapy Center
fast switching: facility lay-out

- fast kicker to switch between treatment rooms
 - already implemented at MPRI
- magnetic septum to increase separation
- integrate degrader + ESS in treatment unit
fast switching: degrader + ESS lay-out

- options for ESS
 - separate magnets in front of gantry
 - most magnets already there!

![Diagram showing degrader, septum magnet, kicker, and energy selection.]

KVI sb/ECPM1205/9
fast switching: degrader + ESS lay-out

- options for ESS
 - separate magnets in front of gantry
 - integrate in gantry (cf. IBA Proteus One)
 - neutron shielding inside rotating gantry
fast switching: beam control

- beam on – off switching
 - kicker (kicker off = beam off)
 - cyclotron (ion source/deflector central region)
- beam intensity during irradiation
 - ion source / deflector central region
- essentially same as current practice
fast switching: further possibilities

- interleaved irradiations in different rooms
 - multiple fields
 - fast volumetric scanning and repainting (moving tumors)
- combine with high dose rates
- further reduction waiting times and interference
fast switching: balance sheet

- productivity gain
 - logistics simulation study on-going
- shorter waiting time Ṣ smaller patient position error
- simplification operation
 - increased modularity (control system)
 - fixed tune main beam line: permanent magnets demonstrated: Fermilab antiproton storage ring

- higher investment
 - kicker and septum magnets (power supplies)
 - additional shielding degrader + ESS
 - less possibilities power supply sharing
 - possibly somewhat higher electricity cost/treatment
 - more equipment running simultaneously
beam splitting: towards real independence

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: principle of operation

- cyclotron delivers constant beam intensity
- replace kicker by electrostatic septum: split off fraction of beam
 - used at PSI up to 2005 for proton therapy
 - basically: inverse of stacking injection in ring
beam splitting: requirements

- beam optics
 - $\sigma(n) = R^n \sigma(0) (R^n)^T$; R transfer matrix septum – septum
 - constant betatron phase advance septum – septum
 - minimize overlap phase space area cut by each septum
 - wide beam at septum:
 - minimize septum losses
 - minimize sensitivity transverse beam motion
 - waist at degrader ü convergent beam at septum
 - no quads main beamline between septa (steering)
 - focussing in septum magnet
- tuning beam distribution
 - septum position / steering magnets (parallel displacement)
beam splitting: TURTLE simulation

- TURTLE calculation
- beam profile before first split
beam splitting: TURTLE simulation

- beam profile after first split
beam splitting: TURTLE simulation

- beam profile before second split
beam splitting: TURTLE simulation

- beam profile after second split
beam splitting: TURTLE simulation

- beam profile before third split
beam splitting: TURTLE simulation

- beam profile after third split

![Graph showing beam profile and septum](image_url)
beam splitting: TURTLE simulation

- beam profile before fourth split
beam splitting: TURTLE simulation

- beam profile after fourth split

![Graph showing beam profile after fourth split](image-url)
beam splitting: intensity control

- beam on – off switching
 - kicker (kicker off = beam off)
 - beam stop
- beam intensity during irradiation
 - collimation in front of degrader
 - beam size at degrader (quadrupoles after magnetic septum)
 - deflection at degrader (electrostatic septum or other)
beam splitting: balance sheet

- productivity gain
- no waiting time Ū smaller patient position error
- simplification operation
 - increased modularity
 - fixed tune main beam line (permanent magnets?)

- higher investment
 - electrostatic + magnetic septum + power supplies
 - additional shielding degrader + ESS
 - no possibilities power supply sharing
 - possibly somewhat higher electricity cost/treatment
 - more equipment running simultaneously
 - more activation cyclotron, beam stops etc.
conclusions

- fast switching between treatment rooms straightforward
 - higher throughput
 - system simplification
 - investment
 - kicker + septum magnet
 - degrader
 - additional shielding
- beam splitting
 - true simultaneous operation
 - more additional shielding + activation
- fixed tune of main beam line
 - permanent magnets
- demonstrated at Fermilab antiproton storage ring
development protons: near future

- 230 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets
development protons: near future

- 250 MeV superconducting synchrocyclotron
 - pulsed beam \(\sim 1 \text{ kHz} \) repetition rate
 - no fast scanning for moving targets
• European Union data
 • population 500 million
 • cancer incidence 2.7 million per year
 • X-ray radiotherapy 1.5 million per year
 • treatment units ~3500
 • share hadrontherapy < 1 %
 • treatment units ~20
 • annual turnover ~10 billion € (< 1 % total healthcare)

• ~50 % of cured patients have undergone radiotherapy
• ~50 % of patients undergoing radiotherapy are cured

radiotherapy important element in cancer care
X-ray radiotherapy: equipment

- accelerating structure
 - standing wave coupled cavity linac (copper)
 - operating frequency: 3 GHz (S-band)
 - gradient ~30 MV/m
 - length ~1 m
- mature and robust technology (50 years experience)
X-ray radiotherapy: equipment

- accelerator
 - standing wave coupled cavity linac (copper)
 - operating frequency: 3 GHz (S-band)
 - gradient ~30 MV/m length ~1 m
- mature and robust technology (50 years experience)

courtesy Siemens
X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI

oesophagus
blue: CT
orange: PET-CT

also very relevant for hadrontherapy
X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI
- optimize irradiation strategy: 3D-CRT ☑️ IMRT ☑️ VMAT

Taheri-Kadkhoda et al, Radiation Oncology 2008 3:4
X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI
- optimize irradiation strategy: 3D-CRT IMRT VMAT
- motion: real time image guided radiotherapy
X-ray radiotherapy: development

- better exploitation imaging information: CT, PET, MRI
- optimize irradiation strategy: 3D-CRT, IMRT, VMAT
- motion: real time image guided radiotherapy
- main progress driver: development ICT technology
why move to protons and carbon?

- superior dose distribution → better treatment outcome
why move to protons and carbon?

- superior dose distribution → better treatment outcome

- irradiated volume non-specific tissue > 50% reduction at all dose levels

- dose reduction critical organs 10 – 60%
why move to protons and carbon?

- superior dose distribution ⚫ better treatment outcome
- complex large scale system

accelerator 230 - 250 MeV protons
- compact cyclotron IBA, Varian
- synchrotron Hitachi

facility area ~80 × 30 m
why move to protons and carbon?

- superior dose distribution → better treatment outcome
- complex large scale system

courtesy IBA
why move to protons and carbon?

- superior dose distribution → better treatment outcome
- complex large scale system

- gantry diameter ~12 m
why move to protons and carbon?

- superior dose distribution → better treatment outcome
- complex large scale system

synchrotron 12C 450 MeV per nucleon

gantry
- rotating mass 450 tons
- length 25 m
- diameter 13 m
why move to protons and carbon?

- superior dose distribution → better treatment outcome
- complex large scale system
why move to protons and carbon?

- superior dose distribution → better treatment outcome
- complex large scale system
- very high investment cost
 - complete facility
 - irradiation setups
 - diagnostic tools (CT, PET, MRI etc.)
 - building
 - capacity 1500 patients per year
 - investment
 - X-rays 25 M€
 - protons 120 M€ (Skandion, Uppsala)
 - carbon 230 M€ (NRoCK, Kiel)

- expensive treatment
- market penetration difficult….. even if better
current status proton

- 96000 patients treated since 1954; 12000 in 2011
- Japan
 - 6 centers operational
 - 2 centers under construction
- China
 - 2 centers operational
 - 2 centers under construction
- Taiwan
 - 1 center under construction
- Europe
 - 12 centers operational
 - 7 centers under construction
- North America
 - 10 centers operational
 - 6 centers under construction
current status carbon

- 9000 patients treated since 1975; 2000 in 2011
- Japan
 - three centers operational: Chiba; Hyogo; Gunma
 - two centers under construction: Kyushu, Tohoku
- China
 - one experimental center operational: Lanzhou
 - one center under construction: Shanghai
- Europe
 - two centers operational: HIT, Heidelberg; CNAO Pavia
 - one center under construction: MedAustron, Vienna
 - one center not active: Rhön Klinikum/Siemens, Marburg
 - one center cancelled: NRoCK, Kiel
 - one center in preparation: Etoile, Lyon
 - one research facility in preparation: ARCHADE, Caen
 - only superconducting cyclotron based facility
- North America: no activity
future development hadron therapy

- Holy Grail: one small and cheap accelerator per room
development protons: near future

- 250 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no degrader + energy selection system
 - no pencil beam scanning
development protons: near future

- 230 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets
development protons: near future

- 250 MeV superconducting synchrocyclotron
 - pulsed beam ~1 kHz repetition rate
 - no fast scanning for moving targets
development protons: near future

- **keyword:** superconductivity
- smaller yes
- cheaper yes
- better no
 - at best similar to current state-of-the-art
 - no upgrade dose delivery technique possible
development protons: long term

- Dielectric Wall Accelerator
 - 2.5 m pulsed linac for 250 MeV protons
 - pulse to pulse variable energy
 - many technological challenges
 - dose delivery technique not clear

metal electrode, high voltage pulse along tube

dielectric material

technology development CPAC + LLNL

still some years to go
development protons: long term

- principle of operation DWA

- Conventional Insulator
- High Gradient Insulator

- Emitted electrons repeatedly bombard surface
- Emitted electrons repelled from surface

- ~5000 electrodes, each with 2 HV switches (25 kV)

- 2 ns pulses
- with 100mA protons
- at 10 Hz

- Dose delivery

KVI

PARTREC | PARTICLE THERAPY RESEARCH CENTER
development protons: long term

- laser acceleration

Electric field generated (10^{12} \text{ V/m})

Protons are pulled out

Accelerates electrons OUT of the target.

Laser

still some more years to go

- laser performance
- low duty cycle
- control proton energy
- dose delivery technique
development protons: long term

- smaller probably
- cheaper maybe
- better not possible to predict

solutions looking for a problem?
development carbon: accelerator

• comparison Heidelberg synchrotron – IBA C400 cyclotron
 • key factors
 • superconductivity
 • compact accelerator

$10\,\text{m}$
development carbon: accelerator

- comparison Heidelberg synchrotron – IBA C400 cyclotron
 - key factors
 - superconductivity
 - compact accelerator
 - cyclotron: fixed energy, continuous beam
 - synchrotron: variable energy, pulsed beam (< 1 Hz)
- differences in treatment quality?
 - compare proton facilities with cyclotron and synchrotron
 - no evidence
 - superconducting cyclotron clearly more cost effective: the way to go
development carbon: dose delivery

- need for gantry: what is loss in treatment quality
 - analysis by radiation oncologists and medical physicists
- superconducting magnets keyfactor to size reduction
- options
 - fast field variation (similar to current gantries)
 - challenge: quench behaviour
 - large momentum acceptance, achromatic gantry
 - slow field variation
 - challenge: patient safety (no energy selectivity)
development carbon: dose delivery

- HIT gantry vs. concept FFAG gantry Trbojevic (Brookhaven)
 - large potential for scale reduction
development carbon

- key factor: superconductivity
- cheaper: yes
- smaller: yes
- better: most likely not worse
- good perspective for large increase in cost effectiveness
development carbon: long term

- Fixed Field Alternating Gradient synchrotron
 - rapid energy variation
 - high frequency pulsed beam
 - does not solve size and cost issues

150 MeV proton FFAG KEK
development carbon: long term

- Fixed Field Alternating Gradient synchrotron
 - does not solve size and cost issues
- DWA and other high gradient techniques
 - maximum gradient ~ 100 MV/m ≥ 40 m length
 - does not solve size and cost issues
- laser and plasma wakefield acceleration
 - for the moment dreams
conclusions

• high investment limiting factor market penetration
 • smaller and cheaper systems needed
 • no compromise on treatment quality
• several options under investigation
 • novel technologies still far from application
• most promising route to success
 • superconductivity
 • compact accelerator ű cyclotron
 • compact gantry: FFAG-like ?

• at the age of 70 cyclotrons still have a long life ahead
past results are no guarantee for the future

but….

some progress has been made over the last 100 years
1939: first neutron therapy

2012: scanned proton beams