Proton Beam Time Structure of the HZB Cyclotron

The Facility

Tandetron™:
- 2 MV tandem accelerator; duoplasmatron ion source; used for therapy since 2011
- 5.5 MV Van-de-Graaff accelerator with an ECR ion source; very versatile, e.g. used for pulsed beams; accelerates C, H, O and noble gases

Cyclotron:
- Isochronous; separated sectors; proton energy up to 72 MeV (light ions 30 MeV/u, heavy ions 6 MeV/u); radio frequency 10-20 MHz; up to 140 kV; acceleration time window of 6° with respect to the radio frequency period

Measurement Devices

Pick-Up
- The Pick-Up is a device for contactless measurements of the proton beam concerning time structure and intensity. It is a 5 cm long tube of copper with a diameter of 1.3 cm. The in and out coming proton bunch generates a typical swing-through signal. The tube is more sensitive to reflections as the Coaxial Cup, as it was not possible to adjust the Pick-Up to 50 Ω impedance. An additional shielding is necessary to avoid stray pick-ups. The shielding tube is 12 cm long. Our prototype is shown in the pictures above.

Signal Processing
- The signal generated by the Coaxial Cup or the Pick-Up is carried to the amplifiers JV 72". Each has an amplification of 30 dB and with the attenuator (to avoid oscillations) the overall amplification is 57 dB or 0.5 x 10^-10 V. The readout of the amplified signal is done by the oscilloscope WavePro 725Zi from LeCroy™, which has 2.5 GHz and a max. sample rate of 40 GS/s.

Coaxial Cup
- The Coaxial Cup is a beam interrupting device for the measurement of the intensity and time structure of the beam. It is a cylindrical copper target surrounded by a copper cup. But this particular cup is, in order to avoid reflections, adjusted to 50 Ω impedance; from a diameter of 1.2 mm at the SMA plug up to 6 mm at the beam side of the copper bolt. The dielectric is acrylic glass at the front and vacuum behind. In addition the whole cup is placed in an aluminum shielding.

Results

Quasi DC
- The picture above shows an unbunched 40 nA proton beam with a substructure (nanobunches) due to its acceleration with the cyclotron. It is measured with the Pick-Up and therefore you can see the typical swing-through. Due to the cyclotron frequency the distance between two nanobunches is approx. 50 ns. This substructure is the reason why this beam current is called quasi DC instead of just DC.

Single Bunch
- The two graphs on the left show a bunched single proton pulse (with the same beam parameters). The Coaxial Cup (CC) measured signal is shown on the upper graph. The lower one shows the signal measured by the Pick-Up (PU) in comparison with the quasi DC signal from the graph in the very left. The PU signal shows very well the bunching effect concerning time sharpness. Further swings in the PU graph are reflections. The reflections in the CC graph are lower and the amplitude is a bit higher, due to the higher sensitivity of the CC. But it is unclear, where the second peak comes from. However, it is excluded that this second peak shows protons.

Pulse Packet
- The picture above shows a pulse packet made of 18 bunched proton pulses. It is approx. 900 ns long and it is measured with the Pick-Up. The variations of each peak intensity can, for instance, be attributed to fluctuations in the ion source current or variations due to the rotating belt in the CN injector. Furthermore, fluctuations in the whole bunching process can cause such peak variations.

What you can do with that:
- Dosimetry with pulsed radiation (protons and neutrons)
- Verification of dosimeters
- What else comes to your mind...

What we offer:
- Pulse lengths: single pulses, pulse packets up to some μs or quasi DC beam
- Proton currents from fA up to μA depending on the pulse structure
- Due to the low repetition rate and pulse-break-ratio of the pulse (150 kHz, 1/600), a new pulser is under construction.

What you can do with that;
- Dosimetry with pulsed radiation (protons and neutrons)
- Verification of dosimeters
- What else comes to your mind...

Protons for Therapy, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

ECJM 2012
Paul Scherrer Institut
Switzerland
May 9-12, 2012

Christoph Kunert
christoph.kunert@helmholtz-berlin.de

Helmholtz Zentrum Berlin
Fax +49 30 80 62 42715
Fon +49 30 80 62 42987

www.helmholtz-berlin.de